
HERODOTOS AND THE ABACUS 

][T is perhaps natural to assume that Herodotos, like his contemporaries,1 used an 
abacus for calculations.2 When his calculations are correct,3 however, it is impos- 

sible to trace the steps by which they were made and so to determine the means used in 
the calculation. But where he gives us both an incorrect solution and the material for 
the correct solution, it is possible not only to check his results but also to show the 
means he used to arrive at them. 

Of six such calculations where Herodotos provides an apparently incorrect solu- 
tion, only three show arithmetical error. The other three are: I, 32, where it is not 
Herodotos' arithmetic that is at fault, but his understanding of the calendar; 4 V, 52, 
where a part of the material which he gave has dropped out of the text and so leaves 

Herodotos himself (II, 36, 4) speaks of the Greek method of counting with pebbles in what 
must be vertical columns and so presumably a form of abacus: ypcfiqwara ypJ4ovat Ka' XoyttovTat ql'ootOt 
nEXve u? v &vpt aptTepTpv E7t rLa &ta OepoVrEs 7`v xdtpa. Aischylos' phrase v ql ' XyEv (AgcE - 

memnon, line 570) seems also to refer to an abacus. Two calculating references in Aristophanes, 
Vespae, suggest the physical form and use of the abacus: 

lines 332-3 v orya tOov ue 7rot'crov f4' o3 / Tas xotptvas aptO)Movirwt. 
lines 656-7 cat irpw3Tov pu'v Ao'ywrat 4a ws, 'S 60ots, &XX' &aro XGpo'S, / TOV qo'pov. 

The stone slab used to count the votes in the courts is mentioned in Aristotle's Constitution of the 
Athenians, 69. The use of pebble-counting for calculations too difficult to be done in the head (on 
the fingers) is also suggested by the fourth-century comedy-writer Alexis (Athenaios, 117 c-e) and 
by Demosthenes (XVIII, 229). The abacus is mentioned by Lysias (fr. 50 Thalheim): /LET3 clalouV 
of Kat Tpa7reTtov 7rwXw-v avTo'v. As early as the sixth century Solon is supposed to have compared 
tyrants' men to the pebbles of an abacus: 

Diogenes Laertios, I, 59 Aecyc 86 TOVS irap\ TOlts TVpaWvvOtgsvvaAEvovg rapa7rXatovs dtvat Tats +v+ots 

TatSg rt TwV oytrpv. cat yap bou'vow eKaCrTV VOTE 7TEV 7XtW -/aftV, TOTE 8f 'TTW - cat TOVTWV TOVS ,~ ~ ~~~~~~~~~~~~~~~rE~ O7/\LtEV 
Ka 

TqTO 
TOV' 

sfi 
rVpaVvOv, rTOTE /EV eKacTOV /.eLyav ayEtv Kac XaJAVpoV, 7TOTE c\ aTl/AOV. 

Much the same analogy occurs in Polybios, V, 26. 
2 The beginnings of " alphabetic" arithmetic (see, for example, T. L. Heath, Manual of Greek 

Mathematics [Oxford, 1931], pp. 28-32) can not be determined, since the date of the introduction 
of alphabetic numerals is still in dispute. Earlier authorities (see, for example, Nagl in P. W., R.E., 
Suppl. III, cols. 11-12) dated their first use to the fourth century B.C. or later, but the most recent 
work on this subject (M. N. Tod, B.S.A., XLV, 1950, p. 137), reminds us that whatever the 
significance and purpose of I.G., J2, 760, may be, it undoubtedly does use alphabetic symbols as 
numerals and that it must be dated by its letter-shapes to the fifth century B.C. But the continued, 
almost universal, use of the acrophonic numerals through at least the fourth century B.C., as well as 
the continuing references to the use of the abacus, makes it unlikely that alphabetic numerals were 
sufficiently well-established in the fifth century to have allowed the development of "alphabetic" 
arithmetic. 

3 Simple addition and multiplication seem to have caused him no difficulty. See the correct 
calculations in VII, 89, 184; VIII, 2; IX, 28. 

4Once it is assumed that months are uniformly 30 days long and that an intercalary month was 
added every other year, it is arithmetically correct to conclude that the number of days in 70 years 
is 360 x 70 plus 30 x 35 or 25,200 plus 1,050, which equals 26,250. 
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us short of his totals; and VIII, 48, where the probability is that one number has 
dropped from our text.6 In the other three passages, our material is almost certainly 
complete, the text appears to be sound, and the errors can be shown to be arithmetical. 
It is to these that we must look for enlightenment on Herodotos' arithmetical means 
and methods. 

II, 142: the problem is how many years are represented by the 341 kings of 
Egypt. Herodotos calculates as follows: " 300 generations of men make 10,000 years, 
for three generations of men are 100 years. Of the other 41 generations, which are 
over and above the 300, the number of years is 1340. Thus in 11,340 years they said 
there was no god in human shape." The material is given for the correct solution 
(11,366% years) both in formula and by example: three generations equal 100 years, 
so 300 generations will be 100 x 100 years or 10,000 years (i. e., 300 divided by 3 
equals 100; 100 x 100 is 10,000). It is to be noted that Herodotos does not treat 341 
as one number but breaks it down into two parts before dividing and multiplying, so 
that the final result is obtained by adding the two results. It is in the second part, 
the 41 generations, that the mistake occurs. But if Herodotos had continued to use 
the same method here as for the 300 generations, it is difficult to see where his par- 
ticular error could enter: 41 3 is 13%; 13% x 100 is 1366%. Motivated perhaps by 
the desire to avoid the fraction two-thirds, which adds still another stage to the calcu- 
lation, Herodotos apparently thought it easier to multiply 41 by 33%. As we do this by 
simple arithmetic the solution is still 13662/3. How did Herodotos do it? 

30x41 is 1230 
3x41 is 123 

1353 

This is correct; then '/3 x 41 is 13 plus (the fraction here may be disregarded as being 
less than a year). And it is here, and only here, that Herodotos could have made the 
mistake which gave him 1340 as a answer. He subtracted the 13 from 1353 instead 
of adding it, obtaining 1340 instead of 1366. This mistake shows his lack of complete 
sureness in dealing with fractions and does more than anything to explain why he 
wished to avoid the fraction two-thirds in the other method. The reason for his con- 
fusion between addition and subtraction in this case is less certain. It- seems likely 

5Not only the fact that Herodotos' itemized stathmoi and parasangs do not add up to his totals, 
but also the absence of the parasang figure for Matiene and geographical accuracy demand an inser- 
tion like that proposed by de la Barre and transposed by Stein. Cf. W. W. How and J. Wells, A 
Commentary on Herodotus, II (Oxford, 1936), p. 23. 

6 See the note on this passage in How and Wells, op. cit. For our purposes it is immaterial 
whether Herodotos wrote gAAA= Sv'o Ka,c 8SKa VeeS (van Herwerden) or gAxat &' vees (Cobet). The 
insertion is made not so much to save Herodotos' arithmetic as to bring the Aiginetan squadron into 
second place as far as numerical strength is concerned or to identify an Aiginetan squadron of ten 
with that mentioned by Aischylos. 
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that, having arrived at the 1353 and the 13, he was unconsciously seduced by the 
rightness of the round number and so subtracted to get 1340. There may also have 
been in his mind, if he had tried finding the multiple of three nearest to 41 for the 
other method, the strong feeling that from his first product he must subtract one- 
third of the multiplicand, i. e., 42 -*3 is 14; 14 x 100 is 1400; 1400- 33Y3 is 1366%. 
When he changed methods, that feeling, out of context though it was, may have 
continued to influence him into subtracting rather than adding. 

That this calculation and mistake were made on the abacus still requires proof. 
The fact that this was the type of mistake which I frequently made when first experi- 
menting with the abacus is no proof, since Herodotos, whether merchant or plain 
citizen, must have been more skilled. My similar mistakes only suggested how Hero- 
dotos could have arrived at his result, whatever the reason. Only if the use of the 
abacus can be proved in the other two cases do we have a presumption that an abacus 
was also the scene of this mistake. 

VII, 187: the problem is how many medimnoi, of 48 choinikes each, will 5,283,220 
men, each consuming a choinix a day, eat in one day. Herodotos' solution is 110.340 
medirnnoi. The correct solution may be obtained as follows: 

110067 plus 
4815283220 

48 
48 
48 
322 
288 
340 
336 

As Schweighaiuser pointed out, Herodotos has mistaken the penultimate remainder 
(340) for the true quotient. Having correctly divided the 528 myriads by 48, he set 
down the solution: 110,000. This method of breaking down the problem into two 
stages was seen in the previous calculation (341 generations taken as 300 and 41). 
The choice of what to add to that first solution from the second calculation is neither 
difficult nor confusing in our paper-and-pencil system. We must try it on the abacus; 
but first let us look at the third mistake. 

III, 89-95: the problem is more complex. Of the twenty. Persian satrapies, 
nineteen paid the greater part of their tribute in silver, for which the standard was 
the Babylonian talent; the twentieth satrapy paid in gold dust, for which the standard 

7Ad loc. Cf. R. W. Macan, Commentary on Herodotus VII-IX (London, 1908), ad loc. and 
How and Wells, op. cit., II, pp. 213-214. 
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was the Euboic talent. The Babylonian talent has 708 Euboic minas.9 The tributes of 
the nineteen satrapies are added together and converted from Babylonian talents to 
Euboic (9540 talents). Unfortunately, Herodotos does not record the total of Baby- 
lonian talents before conversion to the Euboic system, so there is no immediate check 
on the ratio of 60: 70. Nor is there any guarantee either that his arithmetic is correct 
as far as the addition goes or that he added in all the items that he lists.10 But wherever 
we can check him fairly (see note 3 above), Herodotos' addition seems to be uninm- 
peachable, and only if it is impossible to trace the steps which he took in his calculations 
can we assume that he omitted one or more items. The nineteen items add up to a 
total of 7740 Babylonian talents. Since each Babylonian talent equals 70 Euboic minas 
and each Euboic talent equals 60 Euboic minas, it is necessary to multiply -7740 by 70 
and divide the product by 60 in order to get the Euboic talents from the Babylonian. 
70 x 7740 is 541,800. We know from the two previous problems that it was Hero- 
dotos' practice to break down his problem into stages. So we shall set it up as follows, 
taking only the myriads first: 

9000 30 
601540000 6011800 

In adding what should have been the two quotients, Herodotos has again taken the 
quotient from the myriad division and added to it not the other quotient nor any re- 
mainder but the dividend from the first stage of his operations, i. e. 540.2 How this 

SAlthough Reizke's (Th. Mommsen, Rom. Miinzwesen (Berlin, 1860), pp. 23-24) conjecture 
to add oKTQ- Kat (making the Babylonian talent equal to 78 Euboic minas) is usually accepted (cf. 
How and Wells, op. cit., I, pp. 281-282) there is no good textual reason for any insertion at all. 
And as far as actual knowledge of the Babylonian weight system is concerned, there is no certainty 
that would exclude this ratio of 60:70 (cf. 0. Viedebantt, " Forschungen zur Metrologie des 
Altertums," Sdchsische Akademie der Wissenschaften, Abh. Phil.-Histor. Kl., XXXIV, pp. 114- 
115). Most efforts to define the various weight systems are complicated by often desperate 
attempts to derive all the ancient Mediterranean systems from one particular one by various and 
extremely refined adjustments. Cf. C. F. Lehmann-Haupt, P.W., R.E., Suppl. III, cols. 588-592. 
For a bibliography of interpretations on this passage of Herodotos and for a typically involved 
explanation, see Viedebantt, op. cit., pp. 114-120. There seems to be no need here to rehearse the 
various interpretations, since it is our aim to show that, traced to its source, the difficulty can be 
dismissed as an error in arithmetical operations. 

9 Herodotos does not state the elementary fact that any talent has 60 minas in its own system, 
so that the Babylonian talent has 60 Babylonian minas and the Euboic talent has 60 Euboic minas. 

10 It is the contention of those who change the ratio to 60: 78 (and of at least one who does not, 
i. e. Viedebantt, loc cit.) that the 140 talents of the fourth satrapy which were used to support the 
cavalry (III, 90, 3) were not included in the total of Babylonian talents which came to Dareios 
(Mommsen, loc. cit.; Lehmann-Haupt, loc. cit.) With a total of 7600 Babylonian talents at the 
ratio of 60: 78 they obtain a total of 9880 Euboic talents and point with triumph to the one manu- 
script (Sl) which shows 9880 in rasura. But since this one reading can have been reached by a 
copyist subtracting the gold talents given by Herodotos (4680) from his total (14560), it is no 
evidence of MS tradition (Viedebantt, loc. cit.). 

"1This does not explain what appears to be a mistake in addition. Adding 9540 and 4680 
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was a possible and even an easy thing to do must be explained with reference to 
calculation with an abacus. 

Ancient references to the use of the abacus (see note 1 above) combine with 
extant examples 12 to illustrate its form and use. It must have columns vertical to the 

(which should give 14220), Herodotos writes: " when all these are added together the total in 
Euboic talents collected for annual tribute to Dareios was 14560. Letting go what is less tlhan these 
(talents), I do not count it." Since nothing less than a talent is involved in the two factors men- 
tioned, it is my conviction that what we have here is not a mistake in arithmetic but the inclusion 
of various tributes-in-kind converted into their cash value: 360 white horses (90, 3); fish and 
grain from Egypt (91, 2-3); 500 eunuchs (92, 1). For the true total Herodotos must have included 
these items. Presumably he, or his source, reckoned each in talents or parts of a talent and added 
them to get something more than 340 talents (the difference between 14220 and 14560). The 
excess was then dropped to keep the round number. 

12All of the following have been called abaci, not always with complete justification, and 
certainly without regard for the possibility that there may have been different types of abaci. Until 
the functions of the Greek abacus are more clearly understood, they must be studied as a group, 
Such scanty publication as most of them have enjoyed leaves much to be desired in the way of 
details. Mr. E. Vanderpool and Mr. M. Mitsos have kindly examined stones in Athens and Oropos 
in order to answer my questions. 

1) I.G., JJ2, 2777. Pentelic marble. Length, 1.49 m.; width, 0.754 m.; thickness, 0.045-0.075 m. 
Height of letters, 0.012-0.016 m. A set of 11 lines are bisected by a middle line; at the intersection 
of the middle line and third, sixth, and ninth lines there is an X; at the right end of the stone is a 
set of five lines; on the top surface along three edges of the slab are rows of numerals, one row at 
each edge; one row readsTP X7 HrAPFICTX; the two others omit the first two signs. See the drawing 
in I.G. or in Daremberg-Saglio, s.v. Abacus. 

2) I.G., JJ2, 2778. Pentelic marble. Length, 0.76 m., width, 0.75 mn.; tlhickness, 0.085 mn. Height 
of letters, 0.004 tn. Mutilated at left. No mention of lines. A row of numbers: [M] XPI HN APFOC.. 

3) I.G., JJ2 2781. Pentelic marble. Length, 1.19 m.; width, 0.49 m.; thickness, 0.075 m. Height 
of letters, 0.022-0.013 m. On the surface, along one edge, are the numbers:XFI APFTIC. Below 
the numbers are six circles of various sizes. 

4) 'ApX. 'E+., 1925-1926, pp. 44-45, no. 156. White marble. Length, 1.28m.; width, 0.78m.; 
thickness, 0.085 m. Height of letters, 0.025-0.029 m. Five lines perpendicular to one short side; 11 
lines perpendicular to long sides; small semi-circles at either end of the 11-line group and also of 
the five-line group, attached in each case to the end line at its middle section; X's at the center of 
the third, sixth, and ninth lines in the 11-line group. A row of numbers along one short side: 
XPI HPAPFCTX. 

5) Ibid., no. 157. White marble slab with rim; right end lost. Length, 0.80 mi.; width, 0.64 n.; 
thickness (including rim), 0.12 m. Height of letters, 0.022 m. Four lines preserved perpendicular 
to long sides; a row of numbers: MT P- X IF H 1AP . . 

6) Ibid., no. 158. Uninscribed white marble slab with rim. Length, 1.305 m.; width, 0.645 m.; 
thickness, 0.163 m. On center of slab, 11 lines, and perhaps 11 lines in opposite corners. 

7) Ibid., no. 159. Uninscribed white marble fragment. Two lines preserved. 
8) Ibid., no. 160. Uninscribed white marble fragment. Group of five lines preserved; also 

two other lines. 
9) I.G., XII, 7, 282 (Minoa). Two fragments of marble, broken on all sides; columns marked 

off by lines; at top of each column, a number, e. g. XIR H etc. 
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user (Herodotos, II, 36), unmarked pebbles which may be moved from column to 
column (Diogenes Laertios, I, 59; Polybios, V, 26); and it is thought of as stone 
(Aristophanes, Vespae, 332). The extant examples of what may be abaci are perhaps 
naturally of stone, except for the casually converted roof tiles,1" but otherwise vary 
considerably in their form. The only thing which all thirteen examples have in 
common is a flat surface. Ten have a row or rows of numbers, but three,14 which are 
otherwise almost identical with some of the ten, have no trace of numbers. Seven have 
a group or groups of lines which form columns, but six 15 are either not sufficiently 
preserved to show lines or definitely do not have them. There is always the possibility 
that either numbers or lines were painted in and are no longer visible, but whether or 
not that is the case there is certainly the possibility that we are here dealing with at 
least two different kinds of abacus. This latter possibility may be fruitfully pursued 
through a consideration of the relative position of lines and numbers on those abaci on 
which both appear. On only one of these (No. 9 in note 12) do the numbers stand 
at the head of columns and thus label them. In the others the columns are unlabelled 
and in this respect similar to the modern oriental abacus." A simple problem in 
addition will show the operation of the two types: 

10) I.G., XII, 5, 99 (Naxos). Secoma with a row of numbers: XPHPAPIFTIC. 
11) I.G., IX, 1, 488 (Akarnania). Numbers: MpXIRHPr. 
12) B.S.A., XXVIII, 1926-1927, pp. 144-145. Two edge fragments with center missing 

(where lines might have been). A row of numbers along two opposite sides: M I X7I P' iqMAP I D 
TOC X. 

13) Furtwangler u. Reichhold, Gr. Vasenmalerei, II, p. 142. The so-called Darius vase. Table 
with letters: MPI2H >rtO< T. Pebbles in columns below. Accountant with tablet seems to be recording 
sums done in columns on table. Cf. Heath, op. cit., p. 49; Tod, B.S.A., XVIII, 1911-1912, p. 124. 

13These roof tiles (I.G., II2, 2779-2780) with their rows of scratched numbers can only be 
informal imitations of the " regular models," and do not shed further light on the more complete 
stone abaci. 

14Nos. 158-160 from the Amphiareion (Nos. 6-8 in note 12) have no numbers inscribed; 
although two of these are only fragments, the other appears to be complete. 

15 I.G., 112, 2781 (No. 3 in note 12) has only circles and no columns. No. 10 is a measure table; 
No. 12 is not preserved where the lines usually are; Nos. 2, 11, and 13, do not have lines. 

16 Concerning the date of the oriental abacus, L. Carrington Goodrich, who kindly provided 
me with bibliography on the use of the Chinese and Japanese abaci writes in a letter, " A Chinese 
scholar, Li Yen, writing in Yenching Jo. 10, 2123-38 (in Chinese) a few years ago, reports that the 
rules for reckoning with the abacus appear in Chinese books dated respectively 1274, 1299, and 
1355. So it seems to have penetrated China during the Mongol period." For the working of 
these abaci, see Dickson H. Leavens, " The Chinese suan-p'an," Amer. Math. Mo., 27, April, 1920; 
C. G. Knott, "The Abacus in its Historic and Scientific Aspects," reprinted and abridged from 
Trans. of the Asiatic Soc. of Japan, 1886, in E. M. Horsburgh, Modern Instruments and Methods of 
Calculation (London, 1915). 
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No. 9 Modern Oriental 
X [R H I A PI 00 0 0 0 
0 0 0 00 0 0 0 0 

0 0 0 0 0 0 

0 0 00 00 0 

0 00 0 0 

0 0 

0 0 

0 

0 0 0 

0 0 0 0 

0 0 0 0 0 

(For ease of representation vertical lines are omitted: those separating the columns 
in the ancient example; and the wires on which the beads are strung in the modern 
abacus.) Both abaci are set up with the number 2784 (XX[RHH[IAA1111).`) The 
number 1427 (XHHHHAAPlIl) is to be added. No. 9, like all those from ancient 
Greece, has removable pebbles, so that only those actually required for the particular 
calculation appears in the columns. The modern abacus has five beads on each of the 
wires in the lower section, each bead representing one unit in that decimal position, and 
two in the upper section, each representing five of the units below; 18 those in use are 
pushed to the middle bar. Let us add 1427, taking the modern abacus first and 
remembering to start at the left (Herodotos, II, 36; cf. bibliography for modern 
methods in note 16). 1(000) is added to 2(000); 4(00), added to 7(00), gives 
11(00) and so requires the addition of another unit in the thousand column; 2(0) 
and 8(0) mean a similar shift, as do also 4 and 7. The completed sum appears as 
follows: 

0 00 00 0 

00 0o 0 0 

0 0 0 0 

0 0 

0 

0 

0 

0 0 0 

0 00 0 

0 0 0 0 

0 00 0 0 

Since on each wire there are the equivalent of 15 units, often the addend may simply 
be added on in beads, and the then visible total may be resolved. But it is more 
efficient to do part of the operation mentally, saying 4 and 7 are 1 1, so that one bead 
is added in the column to the left and only one retained in this particular column. 

17When money is in question the unit sign for a drachma (I) is used; for non-monetary 
representation, the unit is usually a simple stroke. Cf. M. N. Tod, B.S.A., XVIII, 1911-1912, p. 132. 

"I This is the Chinese type; the Japanese abacus has only four unit-beads and one " five "-bead. 
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With the ancient abacus No. 9 we take the addend in Greek numbers (XHHHH 
AAPI I) and add a pebble for each of these symbols in the appropriate columns: 

Addition Resolution 
X [ H P A P I X 1 H P A P I 
o o 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 

0 0 0 

0 0 

o o 0 0 0 

o 0 0 

0 

0 

The resolution moves from right to left thus: the six pebbles under I become one under 
r and one under I; the two pebbles under P become one under A; the six under A 
become one under 1 and one under A; the two under 1 become one under H; the 
seven under H become one under m and two under H; the two under PR become one 
under X, thus making a total of XXXXHHAI. On this abacus each pebble stands for 
a symbol and no arithmetical adding need be done; one merely adds pebbles and then 
goes through removing sets of pebbles which are numerous enough to appear in the 
next larger column. The same principle is involved as -in the columns of 10 divided 
into five units and two " fives," but it works in a more primitive fashion and requires 
no mental arithmetic such as we know the Greeks used (Aristophanes, Vespae, 656). 
But where the columns are not labelled, as is the case with the majority of extant abaci, 
the alternation of decimal and quinary columns would be confusing for this type of 
calculation. (The abaci with numbers but no lines seem to me to belong to the same 
category as No. 9; on these, pebbles may be arranged under the various symbols; 
pebbles may be added or taken away; and totals of the lesser units may be transferred 
to the larger units. It is this which the clerk on the Darius vase appears to be doing.) 

Of the abaci with unlabelled columns, the most elaborate (No. 1 in note 12) has 
a middle line bisecting the group of 11 lines. This structural similarity with the 
modern abacus suggests that there was functional similarity as well, and that the 
columns were purely decimal with fives above and units below. The most recent 
discussions of the Greek abacus are by Nagl,19 who changed his views 20 concerning 
the operation of the abacus after the discovery of No. 9. Previously he had assumed 21 

that the middle line of the Salamis abacus (No. 1) divided the fives from the units 
in purely decimal columns. Then, forced, as he declares, by the abacus from Minoa 
(No. 9) to assume that this was the type of Greek abacus, he worked out methods of 

19Sitzb. Ak. Wien., 177, 5; P.W., R.E., Suppl. III, s.v. Abacus. 
20Sitzb. Ak. Wien., 177, 5, p. 28. 
21 Abhandl. zur Geschichte der Math., IX, 1899, in Zeitschrift fir Math. u. Physik. 
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calculation for the alternating decimal and quinary columns. In his example of 
multiplication 22 he shows the complexities of that system, which we can paraphrase 
here by doing Herodotos' calculation of 33 x 41 (II, 142). Nagl uses the form of 
the Salamis abacus but assumes that the columns were thought of as labelled like 
those on No. 9. We shall label the columns for the sake of clearness and follow Nagl 
in depicting the various stages by a sort of " running abacus "; for ease of representa- 
tion the three rows of numerals will not be placed along the three edges as in the 
abacus but simply listed at the side. 

I I I I I I I I I I I j X PR H P A P I 
fp M 1,XFF%R,HFPAfln 1, o o (multiplicand) 

ca) O t 0 ,/, I ,I, , , I 
o , I I I O 

I, I , l ~ l l I 
O 

I I J | - I I I I I o I I I0 

i o X P H 1l A rP 
0 o (multiplier) 

I I I o ~I I I 
(c) I I I I I I I I ?I I? ? 

I 0 0 I I I I I I I I ? I Io o 

(aO 0 X PI H API I 0 1 ?X A r I 0 Il o (product) 
1 1 ~1 I I 1 0 1 01 I 1 l 1 

TOTAL o o 
a I a I I 01 1 I I I 

a) 30 x 40. Here Nagl would invoke the "rule by position of Archimedes :23 "The 
position of the product of two numbers is equal to the sum of their positions less one." 
That is, the number 12 (positions 00 or Al) times 970 (positions 000 or HAl) gives 
a product position of 2 plus 3 minus 1 equals 4 (0000 or XHAI). The product of 1 
and 9 (the numbers in the first position of each factor) will be 9 and will be located 
in the 4th position (thousands or X). If the multiplier is 82 instead of 12, the product 
positions will still be 4 (X), and the product of 8 x 9 (the first numbers) will be 
found based on position 4 (X), but starting in position 5, i. e., 72(000) or Iv MMXX. 
In the combination quinary and decimal system this rule is modified 24 SO that 33 
(AAAIII) and 41 (AAAAI) each have 3 positions (API); 3 plus 3 minus 1 equals 5 
(HF1AlI), so that the 2 of the 12 (3x4) will fall in the 5th column (H) on an 
abacus like No. 9; the 1 will fall in the 7th position (X). So here 3(0) x 4(0) 
(AAA x AAAA) equals 1200 (XHH) and we shall place 1 pebble in the X column 
and 2 pebbles in the H column. 

b) 30 x 1. The position rule is 3 plus 1 minus 1 equals 3 (APl). Three pebbles 

22Sitzb. A k. Wien., 177, 5, pp. 56ff. 
23Ibid., pp. 49 ff.; Archimedes, Oa/A/A&LT?rs III, ed. Heiberg, II, 240. 
24Sitzb. Ak. Wien., 177, 5, p. 54. 
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will go into the A column. The multiplicand has been completely multiplied by the 
first element of the multiplier. 

c) 3 x 40. The position rule is 1 plus 3 minus 1 equals 3. Two pebbles will go 
into the A column, and one into the H column. 

d) 3 x 1. The position rule is 1 plus 1 minus I equals 1; three pebbles will go 
into the I column. 

Total: the one pebble in the X column remains; the two and one in the H column 
are added; the three and two in the A column are replaced by one in the 1 column; 
and the three pebbles in the I column remain. The product is XHHHPIII (1353). 

Now let us try the same multiplication on the same abacus (No. 1), but treat 
it as if it were a modern abacus with the middle line dividing purely decimal columns 
into fives and units. Here we place both multiplicand and multiplier in the columns, 
making use of the X's at the intersections of the third, sixth, and ninth lines with 
the middle line.25 They can serve as helpful indicators like the movable pointer on my 
Chinese-type abacus. The multiplier will go in the columns at the extreme right; and 
the multiplicand may be placed so that the middle X marks its end. Where a number 
ends in one or more zeros and the columns are not labelled, some device of this sort 
is necessary to assure that one gets the full value of the number.2" The product, by 
this system, will replace the multiplicand, and thus the middle X will mark its last 
position. Position, by this method, is determined by much the same rule as that used 
by Nagl, but here it is applied directly to the columns, or is, more accurately, a function 
of the columns. A two-position multiplier requires that the product be started in the 
first or second column to the left of the multiplicand, depending on whether the product 
of the first members in each factor is composed of one or two positions. In the case of 
a multiplicand 321 and a multiplier of 32, the product of the first two numbers is 9 
and so goes in the first column to the left; with 30 x 40 (as here) the product of the 
first digits is 12 and so begins in the second column to the left. Where the multiplier 
has three positions, the product will start in the second or third column to the left of 
the multiplicand, etc. 

The problem is set up thus: 

s I % I 0 Ig g 
a I ~I 0 g 1 1 I 1 of 

I I I I Io I I I I 0I 01 

MULTIPLICAND MULTIPLIER 

26 These X's occur on both No. 1 and No. 4 in note 12. 
26This use of the X's will be examined further in connection with problems in divlision. See 

below, p. 283. 
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For the sake of brevity and clarity the following figures will give only the section of 
the abacus in which the multiplicand, and the product into which the multiplicand is 
being converted, appear. In order to keep clear the distinction between product and 
as yet unmultiplied multiplicand, I put a double line between. This would have been 
marked with another pebble by the Greeks. 

I I ,I I I I I I I m I I- 

0 1 0 1 1 I 01 O lIl loll 
101 1 1010Oil0I 

I' I I01 1 O I I I I 
~IOloll I 

, v * II I I I 11, I I I I, I I I 

, ,, o II , , , I 

II I I 10 l0I 

a) 30 x 40 equals 1200. 

b) 3 x 40 equals 120. The first digit of the multiplicand, having been completely 
multiplied, can be replaced by the product, in accordance with the position-rule that 
a multiplier of one position requires that a two-position product begin one column 
to the left and replace the multiplicand with its second digit and that a one-position 
product simply replace the multiplicand. 

c) 30 x 1. The position-rule for a two-position multiplier where the product of 
the first digits occupies only one position places the three pebbles in the first column 
to the left of the multiplicand. 

d) 3 x 1. The multiplicand, completely multiplied, is replaced by the product. In 
the " tens " column the five units are resolved to one " five " in the upper section. The 
product is complete: 1353. 

Again, as with the example of addition, it is seen that the purely decimal columns 
with the middle line allow a technique that makes of the abacus a true calculating 
machine, whereas the quinary-decimal labelled columns can be used only as a score- 
board to record results or as a simple counting board. Unfortunately, Nagl has not 
given us an example of long division, but his suggestions as to how it should be handled 
show that for this he is obliged to use the columns as something more than a score- 
board. The dividend, he says,27 must be placed in the columns and, while the multipli- 
cation of quotient by divisor is carried on in the head or on the fingers, the product 
is subtracted from the dividend in the columns. This supports our previous conclusion 
that labelled columns allow of no other calculations besides addition and subtraction 
and can only serve to record results. Nagl's system, moreover, requires that each 

27Sitzb. Ak. Wien., 177, 5, p. 65. 
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quotient, as it is arrived at, be placed under whichever row of numerals has been 
left open for it; that quotient can not be collected in the columns and moved as a whole. 
It is on this point that we can once again establish contact with Herodotos, whose 
mistakes in long division require a method of calculation in which the quotient as a 
whole 28 is taken off columns in which the remainder is also shown, so that confusion 
between the two is possible. Being forced by Herodotos' mistakes to use the purely 
decimal, unlabelled columns of the Salamis abacus (No. 1) for Herodotos' calcula- 
tions, we must conclude that there were two kinds of abacus in use in ancient Greece. 
It is neither right nor necessary to assume that the Salamis abacus with its unlabelled 
and transected columns would be operated in the same way as the Minoa counting- 
board (No. 9) with its labelled columns. The latter is a scoreboard which is com- 
pletely adequate only for straightforward addition and subtraction of pebbles, but the 
former is a stream-lined machine for more complicated operations.29 It is wrong, 
again, to assume that because the Greeks recorded numbers with a combination of 
the quinary and decimal systems that their abaci must have alternating quinary and 
decimal columns. What was convenient in the recording of numbers (to avoid as many 
as nine units in a row) was not necessarily convenient for the abacus. 

We shall therefore work out Herodotos' problems and mistakes in long division 
on the unlabelled transected columns of the Salamis abacus. And in using it we must 
note that it was apparently made for monetary calculations, since all of the rows of 
numbers include the fractions of the drachma, and the one row which goes higher than 
1000 (X) has as its first figure the T (talent). There is nothing to have prevented 
Herodotos from using such a one, but it is perhaps more likely that he used something 
with M (myriad) substituted for T (such as Nos. 5 and 11 in note 12), without 
fractions added after the unit and with a simple unit sign (I) rather than the drachma 
sign (F). It may be mentioned in passing that for the addition of the contingents of 
the Persian army (VII, 184 ff.) the ten columns of the Salamis abacus would have 
been adequate only if they are interpreted as purely decimal, since on ten alternating 
quinary-decimal columns the top number possible is only 100,000. And ten columns 
seem to have been standard, if we are to judge from the three examples on which whole 
sets of lines are preserved (Nos. 1, 4, 6 in note 12). 

First, the problem of 5,283,220 Persian army personnel eating 5,283,220 
choinikes of grain a day. How many medimnoi does this represent, at 48 choinikes 
to the medimnos? As Herodotos writes it (VII, 187) the dividend is 528 myriads, 

28That is, the whole quotient of each of the two operations: the myriad division, and the 
division of what is less than a myriad. 

29 It may be noted here that Nagl's explanation of the middle line (op. cit., p. 55) is not par- 
ticularly convincing: that the upper section may be used for a second calculation, and that the 
upper section may hold the product of an integral calculation while the fractional calculation is 
being carried on below. 
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3 thousands, 2 hundreds, and 2 decades. And as we saw good reason to think (p. 273), 
he broke the whole number down at least into 528 myriads and 3,220 before dividing. 
This is especially suitable to the Greek number system and the abacus, where no 
number greater than the myriad has a number or symbol, so that this number written 
in figures would be mAAPMMMXXXHHAA.30 The myriads, like talents in mone- 
tary numbers, are treated as units. On the abacus they must also ha've been treated as 
units and divided in a separate operation. 

With the abacus set up for this problem, it should look as follows: 

DIVIDEND DIVISOR X Ir H P A P I 
| , | : : o| | : o 000 |o o o (divisor) 

I oT I??, 0 , I 1??i ? ?o 
I 0 I 0 0 

| ?| | '["H IAr M F X II H F I 

0 0 0 0 0 0 0 (dividend) 
0 0 0 0 0 

0 0 

A r M P X PI H P A I 1 (quotient) 

The whole dividend and divisor are recorded under the rows of numerals; in the 
columns the first dividend (528) is placed so that the middle X marks its end.31 The 
divisor is also placed in the columns, since this juxtaposition of the two factors seems 
to increase the value of the abacus as an efficiently operating machine. 

The steps of the operation follow: 32 

a) 4 goes into 5 with a remainder of 1; 4 pebbles are removed and 1 remains; 
the quotient of 1 is put in another column out of the way. There seems at first no 

I I I I I I I I t 

0 1 0 1 1 0q 1 1 0 1 

I t I I ? I 1. 1 1 1 1 l. 

i , g ,~~ g g 
0 

0) 1 

(r) (d) (d) (q) 

reason why it should not immediately be taken out of the columns and put under 
the row of numbers where the quotient will come out. But where, as here, there is 
room to keep the quotient on tap, it is better to do so, since the first quotient tried 
sometimes has to be reduced and so is not always final. As for the exact location of it 

30 Cf. M. N. Tod, B.S.A., XVIII, 1911-1912, p. 128, citing I.G., XI, 2, 203, B 101. 
31 If myriads were always treated as units and dealt with separately, no dividend would ever 

have more than four positions, and so could always use one of the X's as its base line and still 
leave room for the divisor, if not always for the quotient. 

32 As aids to understanding the figures, the following letters will be placed under the columns: 
r for remainder; d for dividend; q for quotient. 
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in the columns, by the rule of position in division,33 the number of positions in the 
quotient is equal to the number of positions in the dividend minus the number of 
positions in the divisor plus 1. So here: 3 minus 2 plus 1 equals 2. The number of 
myriads in the quotient of 528 divided by 48 will have two positions. Here the X to 
the right is made use of as an end-limit for the quotient and the first figure of the 
quotient is put in the second column to the left of that X. 

b) The second figure of the divisor times the quotient: 8 x 1 equals 8. Subtract 
8 from 12 (which is part remainder and part dividend), leaving a remainder of 4: 

a i a i I , I I 
I 

J l l l l i l l 0l 91 

I I I f 0J t ? I l l l I I I 01 g1 I 01 0 
I I I I I I I I I I 

Cr) (d) (q) 

c) The first remaining figure of the remainder-dividend combination divided by 
the first figure of the divisor: 4 divided by 4 equals 1, with no remainder. The four 
pebbles are removed, and one pebble, as the second quotient, goes into the second 
quotient column: 

I I I I I I I I . I 
,. I I I I I I , I , 
I ,0s , I 0 , , f , o, 

I I , , 9 0, 0 , , 0I 

(r) (q) (q) 

d) The second figure of the divisor times the second quotient: 8 x l equals 8; 
eight pebbles are removed and there is no remainder. 

l l l l l l l ol I 1 0I I I I I I I I I o I l 
I I I I I I I I I o I l .I I 'o I' I 

I I , 
I 9 3 

, , ,~ 09o 
a s , , , , , , , og , 

es) (ci) 

The division of 528 myriads by 48 is complete. To clear the columns for the next 
stage of the division, the quotient (11 myriads) is taken out and put under the row 

of figures saved for the quotient: P M P X P1 H P A P 
0 0 

Now we arrange the board for the division of 3220 by 48. Since 3220 ends with 
a zero (or empty position), the middle X serves to mark its true end. The position 

33 Opposite to that for multiplication. See Nagi, op. cit., p. 64. Of course, where the first number 
of the divisor will not go into the first number of the dividend, the quotient will have its first 
position empty. 
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rule (4 minus 2 plus 1 equals 3) requires that the quotient have three positions. The 
three columns marked off by the middle and righthand X may be used. 

l I I I I I I I I ID 
I , 0, 0, , * . O, I 
* , , -T- i- ol ?ol 
I I I I I I I I 1 l 

(4X) (di) (4O X) 

a) Since 4 will not go into 3, the first position of the quotient will be empty. 
4 will go into 30 seven times, but to avoid a false quotient we remember that 48 is 
nearer 50 than 40, so we try a quotient of 6; 6 x 4 equals 24; pebbles representing the 
24 may then be subtracted from the 30, leaving a remainder of 6, which will be added 
to the 2 of the dividend in the next column. (It may be easier to think of the 24 being 
subtracted from the 32, leaving a remainder of 8.) The quotient 6 is put in the second 
quotient column. 

* * , 01 01 
I 01 -' 01 

Iol 1 o?l I o I 01 01ol I 'I I I I I I o O0 

b) Second figure of the divisor times quotient: 8 x 6 equals 48; pebbles repre- 
senting 48 may be subtracted from 82, leaving a remainder of 34; this subtraction 
requires that one pebble from the column which has 8 be broken down into 10 for 
the column to its right, so that these two columns have 7 and 12. Then 4 from 7 leaves 
3; and 8 from 12 leaves 4. 

1 0 . I I 3 , fi U. ID 

I tI 0101 1 I 01 Q 3030 *0 03 

It is at this point that Herodotos stopped, perhaps because he forgot and assumed 
that 060 rather than 340 was the remainder and so not worth worrying about.34 It 
was still necessary to take the quotient from the columns to the row of figures saved 
for the quotient. According to the position rule, the quotient should have three posi- 
tions. Herodotos, forgetting that the first position of the quotient was empty, and 
laboring under the illusion that 060 was the remainder, simply took the three-position 
figure nearest to hand, i. e. 340, which he added to the quotient row of numerals: 

34 With the X's used to mark end limits of dividend and quotient there was no set place for 
either. A four-position dividend might use the right-hand X as its base line if the quotient were 
also to have four positions. With no set place for the quotient, confusion would be quite easy. 
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A P M P X PI H P A P I 
0 0 0 0 

o 0 

o 0 

0 

I think it is right to say that it was the emptiness of the first position in the 
quotient which confused Herodotos. The same situation occurs in III, 95, where he 
again avoids the true quotient with its empty first position in the second stage of 
division after the myriads have been disposed of. That is, Herodotos' quotient (9540) 
consists of 9(000) from the myriad division and 540 as the quotient from the second 
part of the division. But the correct second quotient is 030. The problem was to 
divide 541,800 (i. e., 70 x 7740) by 60. The steps are as follows: 

a) 54 myriads divided by 60. Position rule: 2 minus 2 plus 1 equals 1. And if 
6 went into 5, the quotient would be in myriads. But since it does not, the quotient 
will not be in myriads, but in the next lower position, i. e., thousands. Nine is the 
correct quotient without any remainder, and so is immediately put in the quotient 
row of numerals: 

, | ' | | | ' | | | A P M P X PI H Fl A P I 
I 

U I ' k I I I I I 
? I? ? I01 oi 01 1 00 

I I 01 1 I I I I I IO 
I 1 0 I I I I I I I I 

I 01 a 
1 l| I1 I I I P I I 1 O 

b) Then, instead of clearing the board of the myriad dividend, Herodotos must 
have left the 54 and put down the 1800 wtih its end against the right-hand X, planning 
to put the quotient in the columns between the left-hand X and that in the middle, from 
which the dividend would almost immediately be divided up and removed. 6 will not 
go into 1, so the first position of a three-position quotient (4 minus 2 plus 1) will 
be left vacant. 

01 I I 3 1 0:1 1 0 I I 
I 01j, I I Oll 0 I "j, 

, 
I 

I *01 I I 01 I , I , 
I I 0I I I I ' I I 
I I t I I I I I I I I 

c) 6 will go into 18, leaving no remainder, and the quotient of 3 will go into 
the second quotient column. Herodotos, then wishing to take out the quotient, ignored 
the 030 as a negligible remainder and took 540 (i. e., 54 rounded out to make a three- 
position quotient) to make the complete quotient: 9540. 



HERODOTOS AND THE ABACUS 287 

, , I , , , t I , i 
I , I , , , , 

t I ?, I I ?~ I 'I Jt I I ,1 0~ 
I 1 01 I It I I t I 
I S O I I 1 I I I I I I 
I * 01 . I 

The mistake in Herodotos, II, 142, of subtracting instead of adding need not be 
abacus-inspired, but since it also involves some confusion about the relation of the 
various factors with one another it too may be thought of as taking place on an 
abacus. There can, of course, be no guarantee that- the particular motives and reasons 
assigned to Herodotos here were those responsible for his mistakes, but it does seem 
clear that an abacus of the Salamis type provides the most favorable set of circum- 
stances for those mistakes. 

MABEL LANG 
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CORRIGENDA 
p. 4, line 38: read "Oaev (?). 
p. 5, line 41 : read 'QO[aEv ( ?) . 
p. 18, line 8 of S7: read wv. 
p. 21, in the Index: read 'Ayvias OQa[Oev ( ?) ];read [Aui]4Oavrog. 
p. 27, line 47: read Eavr&v. 

p. 37, at the beginning of the paragraph: for Line 1 read Lines 2, 42. 
p. 41: for Lines 59-60, 135-137 read Lines 59-60, 136-138; under item e for 

(169/8-156/5) read (ca. 173/2-161/0); in the last line of text, under item c, for 
(ca. 176/5-169/8) read (ca. 176/5-170/69). 

p. 42: under item e for (ca. 169/8-156/5) read (ca. 173/2-161/0); under items 
j and k for (159/8) read (164/3). 

p. 44: for Line 83 read Line 82. 
p. 46: at the top of the page, for Herakleitos read Asklepiades. 
p. 53, note 5: for typographical read clerical. 
p. 59, line 6 of the Greek text: for ay7 aOeZ read ay [aJe. 
p. 60, line 44: for adra&v&a& read e'rawve&at. 
p. 71, line 2 of the first Greek text: for Ico [Kparov read IcoKp [arov. 

p. 89, Col. I, third and fourth lines from the bottom: for 'Ar6AX[wv& --] read 
'A ptof [Xfv3 - - 1. 

p. 95, note on 170/69: for p. 35 read p. 38, note 28. 
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